Featured Articles

LG G Watch R ships in two weeks

LG G Watch R ships in two weeks

The LG G Watch R, the first Android Wear watch with a truly round face, is coming soon and judging by…

More...
LG unveils NUCLUN big.LITTLE SoC

LG unveils NUCLUN big.LITTLE SoC

LG has officially announced its first smartphone SoC, the NUCLUN, formerly known as the Odin.

More...
Microsoft moves 2.4 million Xbox Ones

Microsoft moves 2.4 million Xbox Ones

Microsoft has announced that it move 2.4 million consoles in fiscal year 2015 Q1. The announcement came with the latest financial…

More...
Gainward GTX 970 Phantom previewed

Gainward GTX 970 Phantom previewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
EVGA GTX 970 SC ACX 2.0 reviewed

EVGA GTX 970 SC ACX 2.0 reviewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Thursday, 05 December 2013 11:44

Computer viruses travel on the air

Written by Nick Farrell



Catch them in your handkerchief

Computer scientists have worked out a way to make computer viruses airborne, just like their biological cousins.

The researchers, from Germany's illustrious Fraunhofer Institute for Communication, Information Processing, and Ergonomics have built some proof of concept software which uses inaudible audio signals to communicate, a capability that allows the malware to covertly transmit keystrokes and other sensitive data even when infected machines have no network connection.

The proof-of-concept software could penetrate highly sensitive environments that routinely place an "air gap" between computers and the outside world. It uses built-in microphones and speakers of standard computers. So far the researchers were able to transmit passwords and other small amounts of data from distances of almost 40 metres. The software can transfer data at much greater distances by employing an acoustical mesh network made up of attacker-controlled devices that repeat the audio signals.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments