Featured Articles

TSMC: Volume production of 16nm FinFET in 2H 2015

TSMC: Volume production of 16nm FinFET in 2H 2015

TSMC has announced that it will begin volume production of 16nm FinFET products in the second half of 2015, in late…

More...
AMD misses earnings targets, announces layoffs

AMD misses earnings targets, announces layoffs

AMD has missed earnings targets and is planning a substantial job cuts. The company reported quarterly earnings yesterday and the street is…

More...
Did Google botch the Nexus 6 and Nexus 9?

Did Google botch the Nexus 6 and Nexus 9?

As expected, Google has finally released the eagerly awaited Nexus 6 phablet and its first 64-bit device, the Nexus 9 tablet.

More...
Gainward GTX 970 Phantom previewed

Gainward GTX 970 Phantom previewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
EVGA GTX 970 SC ACX 2.0 reviewed

EVGA GTX 970 SC ACX 2.0 reviewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Tuesday, 03 December 2013 12:17

MIT develops 3D camera which works in the dark

Written by Nick Farrell



Night vision gets better

Researchers from MIT have managed to create a 3D camera which works in the dark. The technology gets its sharp images of dimly lit objects using photons, which are elementary particles that are not composed of smaller particles.

The hardware is not unusual but the software which gathers the information and stiches it together is new. Electrical engineer Ahmed Kirmani and his colleagues at the university developed an algorithm to look at correlations between neighbouring parts of an object lit by pulses of light as well as the science of low light measurements. The time it takes for photons from the laser pulses to be reflected back from the object and read by the detector, provides information about the depth of the object being examined.

A pulse is fired until a reflected photon is recorded by a detector and using the algorithm, each illuminated location is matched to a pixel in the image that is created. The time it takes for photons from the laser pulses to be reflected back from the object and read by the detector, provides information about the depth of the object being examined. At the moment the images are in black and white as the laser produces light of a single wavelength, but the device can pick out some different materials because of the rate they reflect the laser’s colour.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments