Featured Articles

Intel releases tiny 3G cell modem

Intel releases tiny 3G cell modem

Intel has released a 3G cellular modem with an integrated power amplifier that fits into a 300 mm2 footprint, claiming it…

More...
Braswell 14nm Atom slips to Q2 15

Braswell 14nm Atom slips to Q2 15

It's not all rosy in the house of Intel. It seems that upcoming Atom out-of-order cores might be giving this semiconductor…

More...
TSMC 16nm wafers coming in Q1 2015

TSMC 16nm wafers coming in Q1 2015

TSMC will start producing 16nm wafers in the first quarter of 2015. Sometime in the second quarter production should ramp up…

More...
Skylake-S LGA is 35W to 95W TDP part

Skylake-S LGA is 35W to 95W TDP part

Skylake-S is the ‘tock’ of the Haswell architecture and despite being delayed from the original plan, this desktop part is scheduled…

More...
Aerocool Dead Silence reviewed

Aerocool Dead Silence reviewed

Aerocool is well known for its gamer cases with aggressive styling. However, the Dead Silence chassis offers consumers a new choice,…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Monday, 01 April 2013 13:10

Self-healing chips are with us

Written by Nick Farrell



Band-aid will free the world

A group of Caltech researchers have developed an integrated circuit which can reconfigure itself in such a way where it can still remain working.

Ali Hajimiri and his team designed a chip which contains a secondary processor that jumps into action when parts of the chip become compromised. If the bulk of the chip is damaged the secondary processor uses a bit of quick-thinking to figure out how the chip can still perform tasks. The chip is also able to tweak itself on the fly, and can be programmed to focus more on saving energy or performance speed.

The team tested the self-healing capabilities of the chip by blasting it with a laser, taking out around half of its transistors. The microchip took a handful of milliseconds to deal with the loss and move on. When the chip wasn’t blasted by a laser was it could increase its efficiency by reducing its power consumption by half.

According to Hajimiri, the technology behind this self-healing circuit can be applied to any kind of circuit, as the secondary processor is tucked away safely underneath the main unit.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments