Featured Articles

LG G Watch R ships in two weeks

LG G Watch R ships in two weeks

The LG G Watch R, the first Android Wear watch with a truly round face, is coming soon and judging by…

More...
LG unveils NUCLUN big.LITTLE SoC

LG unveils NUCLUN big.LITTLE SoC

LG has officially announced its first smartphone SoC, the NUCLUN, formerly known as the Odin.

More...
Microsoft moves 2.4 million Xbox Ones

Microsoft moves 2.4 million Xbox Ones

Microsoft has announced that it move 2.4 million consoles in fiscal year 2015 Q1. The announcement came with the latest financial…

More...
Gainward GTX 970 Phantom previewed

Gainward GTX 970 Phantom previewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
EVGA GTX 970 SC ACX 2.0 reviewed

EVGA GTX 970 SC ACX 2.0 reviewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Friday, 15 March 2013 09:48

Common encryption easy to crack

Written by Nick Farrell



TLS and SSL are toast

An insecurity expert at the University of Illinois at Chicago Professor Dan Bernstein has demonstrated a method for breaking Transport Layer Security, (TLS) and Secure Sockets Layer or SSL. 

Bernstein has discovered cracks in TLS and SSL when they’re combined with another encryption scheme known as RC4. The system invented in 1987 is one of the most popular and most widely recommended mechanisms for protecting traffic on banking, email, and other private sites.

Kenny Paterson, a professor at Royal Holloway, University of London who worked with Bernstein said it was known that RC4 is weak in all kinds of ways. But until now no one has been able to put it all together to break TLS. RC4, invented by legendary cryptographer Ron Rivest for the security firm RSA, uses a key value to generate a stream of seemingly random numbers that can be combined with bits in a message to scramble them in ways that only someone with access to the same key value can unscramble.

Its weakness is that the stream of random numbers isn’t as random as it looks. If you feed the same message through the encryption scheme again and again, the cryptographers could find enough non-random “biases” occur in the scrambled data. While it does take a gigantic number of identical messages the attack in its current form takes close to 32 hours to perform. It is still worthwhile in some cases.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments