Featured Articles

TSMC: Volume production of 16nm FinFET in 2H 2015

TSMC: Volume production of 16nm FinFET in 2H 2015

TSMC has announced that it will begin volume production of 16nm FinFET products in the second half of 2015, in late…

More...
AMD misses earnings targets, announces layoffs

AMD misses earnings targets, announces layoffs

AMD has missed earnings targets and is planning a substantial job cuts. The company reported quarterly earnings yesterday and the street is…

More...
Did Google botch the Nexus 6 and Nexus 9?

Did Google botch the Nexus 6 and Nexus 9?

As expected, Google has finally released the eagerly awaited Nexus 6 phablet and its first 64-bit device, the Nexus 9 tablet.

More...
Gainward GTX 970 Phantom previewed

Gainward GTX 970 Phantom previewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
EVGA GTX 970 SC ACX 2.0 reviewed

EVGA GTX 970 SC ACX 2.0 reviewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Friday, 01 March 2013 09:30

Quantum computer break-through

Written by Nick Farrell



Information transferred from atom to photon

Boffins at he University of Innsbruck in Austria have managed to transfer quantum information from an atom to a photon, which is being seen as a breakthough in the making of quantum computers.

According to Humans Invent the breakthough allows quantum computers to exchange data at the speed of light along optical fibres. Lead researcher on the project Tracy Northup said that the method allows the mapping of quantum information faithfully from an ion onto a photon.

Northup’s team used an “ion trap” to produce a single photon from a trapped calcium ion with its quantum state intact using mirrors and lasers. No potential cats were injured in the experiment. The move enables boffins to start to play with thousands of quantum bits rather than just a dozen or so. This means that they can get a computer to do specific tasks like factoring large numbers or a database search, faster.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments