Featured Articles

Nvidia officially launches the 8-inch Shield Tablet

Nvidia officially launches the 8-inch Shield Tablet

As expected and reported earlier, Nvidia has now officially announced its newest Shield device, the new 8-inch Shield Tablet. While the…

More...
Intel launches new mobile Haswell and Bay Trail parts

Intel launches new mobile Haswell and Bay Trail parts

Intel has introduced seven new Haswell mobile parts and four Bay Trail SoC chips, but most of them are merely clock…

More...
Aerocool Dead Silence reviewed

Aerocool Dead Silence reviewed

Aerocool is well known for its gamer cases with aggressive styling. However, the Dead Silence chassis offers consumers a new choice,…

More...
AMD SVP John Byrne named turnaround exec of the year

AMD SVP John Byrne named turnaround exec of the year

Director of AMD’s PR Chris Hook has tweeted and confirmed later in a conversation with Fudzilla that John Byrne, Senior Vice…

More...
AMD A8-7600 Kaveri APU reviewed

AMD A8-7600 Kaveri APU reviewed

Today we'll take a closer look at AMD's A8-7600 APU Kaveri APU, more specifically we'll examine the GPU performance you can…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Friday, 16 November 2012 11:25

Texas boffins increase density of HDD

Written by Nick Farrell



Not bad for a state which doesn't believe in evolution


Researchers at the University Texas took time out from their busy schedule of proving that the world is 6000 years old by coming up with a design that could circumvent some of the pressing limitations of data storage technology.

The researchers at the University of Texas were able to produce nanoscale self-assembling dots, and work around the limitations that hamper traditional designs. It means that cheap, reliable hard drives with record storage density. It all depends on a process to synthesise block copolymers, a material that can quickly self-assemble into dots that are less than 10 nanometers in size.

The polymer will follow any pattern etched into the surface on which it is deposited, which is perfect for disk drives. When the polymer is slapped on a properly prepared metal substrate it will conform itself and produce the required dot design with a high degree of accuracy.

The University is working with Hitachi Global Storage Technologies to try and adapt this technology to their products and integrate it into a mainstream manufacturing process.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments