Featured Articles

AMD sheds light on stacked DRAM APUs

AMD sheds light on stacked DRAM APUs

AMD is fast tracking stacked DRAM deployment and a new presentation leaked by the company  points to APUs with stacked DRAM,…

More...
Nvidia officially launches the 8-inch Shield Tablet

Nvidia officially launches the 8-inch Shield Tablet

As expected and reported earlier, Nvidia has now officially announced its newest Shield device, the new 8-inch Shield Tablet. While the…

More...
Intel launches new mobile Haswell and Bay Trail parts

Intel launches new mobile Haswell and Bay Trail parts

Intel has introduced seven new Haswell mobile parts and four Bay Trail SoC chips, but most of them are merely clock…

More...
Aerocool Dead Silence reviewed

Aerocool Dead Silence reviewed

Aerocool is well known for its gamer cases with aggressive styling. However, the Dead Silence chassis offers consumers a new choice,…

More...
AMD A8-7600 Kaveri APU reviewed

AMD A8-7600 Kaveri APU reviewed

Today we'll take a closer look at AMD's A8-7600 APU Kaveri APU, more specifically we'll examine the GPU performance you can…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Tuesday, 26 June 2012 12:31

Boffins transmit data at 2.5 terabits per second

Written by Nick Farrell

y exclamation

Twisted vortex beams

 A team of American and Israeli boffins have used twisted vortex beams to transmit data at 2.5 terabits per second.

This makes it about the fastest wireless network that we can think of. The technique is likely to be used in the next few years.

Twisted signals use orbital angular momentum to stuff more data into a single stream. WiFi, LTE, COFDM modulates the spin angular momentum of radio waves, not the angular momentum.

The boffins, Alan Willner and fellow researchers from the University of Southern California, NASA’s Jet Propulsion Laboratory, and Tel Aviv University, twisted together eight ~300Gbps visible light data streams using orbital angular moment.  Each of the eight beams has a different level of twist.

The beams are bundled into two groups of four, which are passed through different polarization filters. One bundle of four is transmitted as a thin stream while the other four are transmitted around the outside.

The beam is then transmitted over open space (just one meter in this case), and untwisted and processed by the receiving end. 2.5 terabits per second is equivalent to 320 gigabytes per second, or around seven full Blu-ray movies per second. Needless to say there is a lot of porn that can be shifted on that sort of network.


Last modified on Tuesday, 26 June 2012 13:00

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments