Featured Articles

Hands on: Nvidia Shield Tablet with Android 5.0

Hands on: Nvidia Shield Tablet with Android 5.0

We broke the news of Nvidia's ambitious gaming tablet plans back in May and now the Shield tablet got a bit…

More...
Nokia N1 Android tablet ships in Q1 2015

Nokia N1 Android tablet ships in Q1 2015

Nokia has announced its first Android tablet and when we say Nokia, we don’t mean Microsoft. The Nokia N1 was designed…

More...
Marvell launches octa-core 64-bit PXA1936

Marvell launches octa-core 64-bit PXA1936

Marvell is better known for its storage controllers, but the company doesn’t want to give up on the smartphone and…

More...
TSMC 16nm FinFET Plus in risk production

TSMC 16nm FinFET Plus in risk production

TSMC’s next generation 16nm process has reached an important milestone – 16nm FinFET Plus (16FF+) is now in risk production.

More...
Nvidia GTX 970 SLI tested

Nvidia GTX 970 SLI tested

Nvidia recently released two new graphics cards based on its latest Maxwell GPU architecture, with exceptional performance-per-watt. The Geforce GTX 970…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Tuesday, 01 May 2012 10:42

Nvidia patents parallelisation of GPU data

Written by Nick Farrell



Keep all your processors hierarchical


Graphics dalek Nvidia has filed for an extension to its patents  for a hierarchical processor array.

It looks like Nvidian thinks that Patent 7,634,637 can be extended to cover some new ideas it has to fix a core design problem  hat results in wide and ineffective graphics rendering pipelines. Nvidia has applied for a patent that describes the idea is that there are two or three tiers of processing cores with dedicated functions. The pipelines would include different shaders, such as a vertex shader unit, a geometry shader, a pixel shader and some others.

In the patent Nvidia says that "each massively parallel stage in a stage-by-stage pipeline tends to provide little granularity of control of portions of each parallel stage. Each "massively parallel stage becomes unwieldy and prohibitively time-consuming to design". As the massively parallel stage struggles during operation to find sufficiently wide units of work to fully occupy the data path its usage is cut back.

Nvida's cunning plan is to keep parallelisation efficient, by using multiple levels of processing hierarchies with multiple classes of graphics operations being associated with a different stage of graphics processing. Each level would include a module that is capable of processing all graphics functions. There would also be one top-level component that is able to distribute certain classes of work to lower level classes of processors.

It also comes out with a third-level class in the processor hierarchy that would be reserved for general purpose computations, and a specialised graphics function module that can perform graphics operations carried out based on frame buffer data.

The result is a design which is configured to execute a large number of threads in parallel.

More here.

Last modified on Friday, 04 May 2012 08:24

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments