Featured Articles

IHS teardown reveals Galaxy S5 BOM

IHS teardown reveals Galaxy S5 BOM

Research firm IHS got hold of Samsung’s new flagship smartphone and took it apart to the last bolt to figure out…

More...
Galaxy S5, HTC One M8 available selling well

Galaxy S5, HTC One M8 available selling well

Samsung’s Galaxy S5 has finally gone on sale and it can be yours for €699, which is quite a lot of…

More...
Intel lists Haswell refresh parts

Intel lists Haswell refresh parts

Intel has added a load of Haswell refresh parts to its official price list and there really aren’t any surprises to…

More...
Respawn confirms Titanfall DLC for May

Respawn confirms Titanfall DLC for May

During his appearance at PAX East panel and confirmed on Twitter, Titanfall developer Respawn confirmed that the first DLC pack for…

More...
KFA2 GTX 780 Ti Hall Of Fame reviewed

KFA2 GTX 780 Ti Hall Of Fame reviewed

KFA2 gained a lot of overclocking experience with the GTX 780 Hall of Fame (HOF), which we had a chance to…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Monday, 02 April 2012 20:22

Flexible transparent PC memory achieved in chemistry lab

Written by Jon Worrel

memristor logo

Transparent smartphones, tablets on the horizon

Researchers at Rice University in Houston, Texas have recently made a breakthrough in the development of transparent, flexible computer memory using silicon oxide as the active component. According to university chemist James Tour, the breakthrough could soon allow for flexible, bendable touchscreens, transparent integrated circuits and flexible batteries, among other mobile hardware components.

“Generally, you can’t see a bit of memory, because it’s too small,” said Tour, Rice’s T.T. and W.F. Chao Chair in Chemistry. “But silicon itself is not transparent. If the density of the circuits is high enough, you’re going to see it.”

flexible transparent memory

Transparent memory on plastic substrate. Source: Rice University

The transparent memory breakthrough is based upon a 2010 chemistry discovery that pushing a strong charge through standard silicon oxide, an insulator widely used in electronics, forms channels of pure silicon crystals less than 5 nanometers wide. The initial voltage appears to strip oxygen atoms from the silicon oxide; lesser charges then repeatedly break and reconnect the circuit and turn it into nonvolatile memory. Nevertheless, a smaller signal can be used to poll the memory state without altering it.

Just as with Intel's 3D-stacked transistor approach in Ivy Bridge processors and beyond, researchers at Rice hope to develop a transparent memory device that can be stacked in a three-dimensional configuration and attached to a flexible substrate.

A full overview of the discovery, including a video of the work, can be found here

Jon Worrel

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

To be able to post comments please log-in with Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments