Featured Articles

Analyst reveals Apple Watch spec

Analyst reveals Apple Watch spec

An analyst has examined the Apple Watch supply chain in an effort to ascertain the exact spec of Cupertino’s new gadget…

More...
Nvidia's first 20nm product is a mobile SoC

Nvidia's first 20nm product is a mobile SoC

For much of the year we were under the impression that the second generation Maxwell will end up as a 20nm…

More...
Nvidia GTX 980 reviewed

Nvidia GTX 980 reviewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
Nvidia adjusts GTX 980 and GTX 970 pricing

Nvidia adjusts GTX 980 and GTX 970 pricing

It appears that Nvidia has been feeling the pulse of the market and took some note from comments regarding the original…

More...
PowerColor TurboDuo R9 285 reviewed

PowerColor TurboDuo R9 285 reviewed

Today we will take a look at the PowerColor TurboDuo Radeon R9 285. The card is based on AMD’s new…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Monday, 02 April 2012 20:22

Flexible transparent PC memory achieved in chemistry lab

Written by Jon Worrel

memristor logo

Transparent smartphones, tablets on the horizon

Researchers at Rice University in Houston, Texas have recently made a breakthrough in the development of transparent, flexible computer memory using silicon oxide as the active component. According to university chemist James Tour, the breakthrough could soon allow for flexible, bendable touchscreens, transparent integrated circuits and flexible batteries, among other mobile hardware components.

“Generally, you can’t see a bit of memory, because it’s too small,” said Tour, Rice’s T.T. and W.F. Chao Chair in Chemistry. “But silicon itself is not transparent. If the density of the circuits is high enough, you’re going to see it.”

flexible transparent memory

Transparent memory on plastic substrate. Source: Rice University

The transparent memory breakthrough is based upon a 2010 chemistry discovery that pushing a strong charge through standard silicon oxide, an insulator widely used in electronics, forms channels of pure silicon crystals less than 5 nanometers wide. The initial voltage appears to strip oxygen atoms from the silicon oxide; lesser charges then repeatedly break and reconnect the circuit and turn it into nonvolatile memory. Nevertheless, a smaller signal can be used to poll the memory state without altering it.

Just as with Intel's 3D-stacked transistor approach in Ivy Bridge processors and beyond, researchers at Rice hope to develop a transparent memory device that can be stacked in a three-dimensional configuration and attached to a flexible substrate.

A full overview of the discovery, including a video of the work, can be found here

Jon Worrel

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments