Featured Articles

Analysts expect ARM to do well next year

Analysts expect ARM to do well next year

British chip designer ARM could cash in on the mobile industry's rush to transition to 64-bit operating systems and hardware.

More...
Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Samsung has lost smartphone market share, ending the quarter on a low note and Xiaomi appears to be the big winner.

More...
Intel Broadwell 15W coming to CES

Intel Broadwell 15W coming to CES

It looks like Intel will be showing off its 14nm processors, codenames Broadwell, in a couple of weeks at CES 2015.

More...
Gainward GTX 980 Phantom reviewed

Gainward GTX 980 Phantom reviewed

Today we’ll be taking a closer look at the recently introduced Gainward GTX 980 4GB with the company’s trademark Phantom cooler.

More...
Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac has been in the nettop and mini-PC space for more than four years now and it has managed to carve…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Monday, 12 March 2012 12:48

MIT discovers new fibre

Written by Nick Farrell



Could bring 3D displays


Boffins at MIT have found a new fibre that can emit light along its length in any direction may herald flexible 3-D displays and medical tools that activate therapeutic compounds with bursts of light.

According to MIT the new fibre was developed by Yoel Fink's group emits blue laser light only at a precisely controlled location. Most light emitters, from candles to light bulbs to computer screens, look the same from any angle. But in a paper published this week on the Nature Photonics website, MIT researchers report the development of a new light source  whose brightness can be controllably varied for different viewers.

This allows 3-D displays woven from flexible fibres that project different information to viewers’ left and right eyes. The fibre could also enable medical devices that can be threaded into narrow openings to irradiate diseased tissue, selectively activating therapeutic compounds while leaving healthy tissue untouched.

The paper is the work of seven boffins  affiliated with MIT’s Research Laboratory of Electronics (RLE), including Yoel Fink, a professor of materials science and electrical engineering.

More here.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments