Featured Articles

5th Generation Broadwell 14nm family comes in three lines

5th Generation Broadwell 14nm family comes in three lines

Intel's 5th Core processor family, codenamed Broadwell, will launch in three lines for the mobile segment. We are talking about upcoming…

More...
Broadwell Chromebooks coming in late Q1 2015

Broadwell Chromebooks coming in late Q1 2015

Google's Chromebook OS should be updating automatically every six weeks, but Intel doesn't come close with its hardware refresh schedule.

More...
New round of Nexus phone rumour kicks off

New round of Nexus phone rumour kicks off

Rumours involving upcoming Nexus devices are nothing uncommon, but this year there is a fair bit of confusion, especially on the…

More...
Nvidia officially launches the 8-inch Shield Tablet

Nvidia officially launches the 8-inch Shield Tablet

As expected and reported earlier, Nvidia has now officially announced its newest Shield device, the new 8-inch Shield Tablet. While the…

More...
Aerocool Dead Silence reviewed

Aerocool Dead Silence reviewed

Aerocool is well known for its gamer cases with aggressive styling. However, the Dead Silence chassis offers consumers a new choice,…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Monday, 12 March 2012 12:48

MIT discovers new fibre

Written by Nick Farrell



Could bring 3D displays


Boffins at MIT have found a new fibre that can emit light along its length in any direction may herald flexible 3-D displays and medical tools that activate therapeutic compounds with bursts of light.

According to MIT the new fibre was developed by Yoel Fink's group emits blue laser light only at a precisely controlled location. Most light emitters, from candles to light bulbs to computer screens, look the same from any angle. But in a paper published this week on the Nature Photonics website, MIT researchers report the development of a new light source  whose brightness can be controllably varied for different viewers.

This allows 3-D displays woven from flexible fibres that project different information to viewers’ left and right eyes. The fibre could also enable medical devices that can be threaded into narrow openings to irradiate diseased tissue, selectively activating therapeutic compounds while leaving healthy tissue untouched.

The paper is the work of seven boffins  affiliated with MIT’s Research Laboratory of Electronics (RLE), including Yoel Fink, a professor of materials science and electrical engineering.

More here.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments