Featured Articles

IHS teardown reveals Galaxy S5 BOM

IHS teardown reveals Galaxy S5 BOM

Research firm IHS got hold of Samsung’s new flagship smartphone and took it apart to the last bolt to figure out…

More...
Galaxy S5, HTC One M8 available selling well

Galaxy S5, HTC One M8 available selling well

Samsung’s Galaxy S5 has finally gone on sale and it can be yours for €699, which is quite a lot of…

More...
Intel lists Haswell refresh parts

Intel lists Haswell refresh parts

Intel has added a load of Haswell refresh parts to its official price list and there really aren’t any surprises to…

More...
Respawn confirms Titanfall DLC for May

Respawn confirms Titanfall DLC for May

During his appearance at PAX East panel and confirmed on Twitter, Titanfall developer Respawn confirmed that the first DLC pack for…

More...
KFA2 GTX 780 Ti Hall Of Fame reviewed

KFA2 GTX 780 Ti Hall Of Fame reviewed

KFA2 gained a lot of overclocking experience with the GTX 780 Hall of Fame (HOF), which we had a chance to…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Tuesday, 20 September 2011 12:11

Boffins come up with new power management technique

Written by Nick Farell
y_exclamation

All in the signal's header
Boffins at the University of Michigan researchers have come up with a new power management system for smartphones that could improve battery life by 50 per cent.

Xinyu Zhang and Kang Shin have created a proof-of-concept system known as E-MiLi, or Energy-Minimizing Idle Listening. This fixes the energy waste that occurs when "sleeping" phones are looking for incoming messages and clear communication channels.

E-MiLi slows down the clock of a phone's WiFi card by up to 1/16 its normal frequency in order to save power, but then kicks it back up to full speed when information is coming in. The phone uses the header of the incoming message to wake itself up from its "subconscious mode," so the clock is at a full speed to receive the main message.

It does require firmware to be installed on phones and other devices that would be sending them. The header would need to be encoded in such a way that the receiving phone could detect it too. Shin and Zhang have created such firmware, but WiFi chipset manufacturers would have to adopt it, and then smartphone manufacturers would in turn have to start using those chips.


Nick Farell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

To be able to post comments please log-in with Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments