Featured Articles

Intel releases tiny 3G cell modem

Intel releases tiny 3G cell modem

Intel has released a 3G cellular modem with an integrated power amplifier that fits into a 300 mm2 footprint, claiming it…

More...
Braswell 14nm Atom slips to Q2 15

Braswell 14nm Atom slips to Q2 15

It's not all rosy in the house of Intel. It seems that upcoming Atom out-of-order cores might be giving this semiconductor…

More...
TSMC 16nm wafers coming in Q1 2015

TSMC 16nm wafers coming in Q1 2015

TSMC will start producing 16nm wafers in the first quarter of 2015. Sometime in the second quarter production should ramp up…

More...
Skylake-S LGA is 35W to 95W TDP part

Skylake-S LGA is 35W to 95W TDP part

Skylake-S is the ‘tock’ of the Haswell architecture and despite being delayed from the original plan, this desktop part is scheduled…

More...
Aerocool Dead Silence reviewed

Aerocool Dead Silence reviewed

Aerocool is well known for its gamer cases with aggressive styling. However, the Dead Silence chassis offers consumers a new choice,…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Tuesday, 25 January 2011 10:42

Boffins come up with universal memory

Written by Nick Farell
y_exclamation

Speed of DRAM with the density of Flash
Boffins at Carolina State University have come up with a "universal" memory technology that combines the speed of DRAM with the non-volatility and density of flash.

Professor Paul Franzon told EE Times that the new memory technology should enable computers to power down memories not currently being accessed, drastically cutting the energy consumed by computers of all types, from mobile and desktop computers to server farms and data centers.

The technology uses a double floating-gate field-effect-transistor (FET) is as fast as DRAM and will need to be refreshed as often. However the densities will be about the same as flash.

The double floating-gates use direct tunneling when storing charge to represent bits. This means that the whole lot is done at lower voltages.

The first floating-gate requires refreshing about as often as DRAM. But if the boffins turn up the voltage its data value can be transferred to the second floating-gate, which acts more like a traditional flash memory, offering long-term nonvolatile storage.

The upshot is that a computer can operate normally until they become idle. Then their data values are transferred to the second gate in order to power down the memory chip.  When the computer needs the stored values, the second gate quickly transfers their stored charge back to the first gate and normal operations can resume.

Franzon said that the method will  enable power-proportional computing, by allowing memory to be turned off during periods of low use.


blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments