Error
  • JUser::_load: Unable to load user with id: 67

Featured Articles

Analysts expect ARM to do well next year

Analysts expect ARM to do well next year

British chip designer ARM could cash in on the mobile industry's rush to transition to 64-bit operating systems and hardware.

More...
Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Samsung has lost smartphone market share, ending the quarter on a low note and Xiaomi appears to be the big winner.

More...
Intel Broadwell 15W coming to CES

Intel Broadwell 15W coming to CES

It looks like Intel will be showing off its 14nm processors, codenames Broadwell, in a couple of weeks at CES 2015.

More...
Gainward GTX 980 Phantom reviewed

Gainward GTX 980 Phantom reviewed

Today we’ll be taking a closer look at the recently introduced Gainward GTX 980 4GB with the company’s trademark Phantom cooler.

More...
Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac has been in the nettop and mini-PC space for more than four years now and it has managed to carve…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Wednesday, 11 April 2007 11:59

IBM speeds 3D images

Written by

Image

Servers helps cure the cancer

IBM has tinkered with parallel computer architecture in a bid to dramatically speed the processing of 3-D medical images.

By porting and optimisation of Mayo Clinic's Image Registration Application on the IBM BladeCenter QS20 "Cell Blade” managed to process images more than 50 times faster than traditional methods.

The results will be presented in full in a joint presentation by Mayo Clinic and IBM at the IEEE (Institute of Electrical and Electronics Engineers) International Symposium on Biomedical Imaging in Washington, next week. Doctors have been using several sources including magnetic resonance imaging (MRI) and computerized tomography (CT) scans to generate the accuracy of scans.

However when three dimensions and millions of pixels are involved, the task becomes exponentially complex.

The Mayo Clinic and IBM used 98 sets of images. It took seven hours to process 98 sets of images using traditional methods. But with a "mutual-information-based" 3-D linear registration algorithm application optimized for Cell/B.E. and completed the registration for all 98 sets of images in just 516 seconds.

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments