Featured Articles

IHS teardown reveals Galaxy S5 BOM

IHS teardown reveals Galaxy S5 BOM

Research firm IHS got hold of Samsung’s new flagship smartphone and took it apart to the last bolt to figure out…

More...
Galaxy S5, HTC One M8 available selling well

Galaxy S5, HTC One M8 available selling well

Samsung’s Galaxy S5 has finally gone on sale and it can be yours for €699, which is quite a lot of…

More...
Intel lists Haswell refresh parts

Intel lists Haswell refresh parts

Intel has added a load of Haswell refresh parts to its official price list and there really aren’t any surprises to…

More...
Respawn confirms Titanfall DLC for May

Respawn confirms Titanfall DLC for May

During his appearance at PAX East panel and confirmed on Twitter, Titanfall developer Respawn confirmed that the first DLC pack for…

More...
KFA2 GTX 780 Ti Hall Of Fame reviewed

KFA2 GTX 780 Ti Hall Of Fame reviewed

KFA2 gained a lot of overclocking experience with the GTX 780 Hall of Fame (HOF), which we had a chance to…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Sunday, 22 March 2009 22:26

Critical component of quantum computing discovered

Written by Jon Worrel

Image

Non-silicon based computing on the horizon

Researchers at the UK's Edinburgh and Manchester universities have recently created a non-silicon based molecular device which could serve as the foundation for very powerful and practical quantum computers.


The highly parallel concept of quantum computing has been around for quite some time. It basically idealizes itself around the use of quantum binary digits, or qubits, which are far more complex than typical 1 or 0 ("on" or "off") bits as they are capable of representing a range of values simultaneously. However, one of the major challenges presented to researchers has been the search for a practical medium in which this new form of computing can be implemented.

According to Professor David Leigh, of Edinburgh University's school of chemistry, "the major challenges we face now are to bring many of these qubits together to build a device that could perform calculations, and to discover how to communicate between them." Moreover, the complexity of the qubit will enable quantum computers to perform more quickly than conventional machines in a process known as quantum parallelism. "This development brings super-fast, non-silicon based computing a step closer," he added.

The molecular device discovered was found by combining tiny magnets with molecular machines that can transport between two locations without the use of external force. In effect, these maneuverable magnets may one day be used as the basic component of quantum computing.

On another note, the study was funded by the European Commission and published in Nature, a weekly international science journal.

Last modified on Monday, 23 March 2009 10:32

Jon Worrel

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

To be able to post comments please log-in with Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments