Featured Articles

Hands on: Nvidia Shield Tablet with Android 5.0

Hands on: Nvidia Shield Tablet with Android 5.0

We broke the news of Nvidia's ambitious gaming tablet plans back in May and now the Shield tablet got a bit…

More...
Nokia N1 Android tablet ships in Q1 2015

Nokia N1 Android tablet ships in Q1 2015

Nokia has announced its first Android tablet and when we say Nokia, we don’t mean Microsoft. The Nokia N1 was designed…

More...
Marvell launches octa-core 64-bit PXA1936

Marvell launches octa-core 64-bit PXA1936

Marvell is better known for its storage controllers, but the company doesn’t want to give up on the smartphone and…

More...
TSMC 16nm FinFET Plus in risk production

TSMC 16nm FinFET Plus in risk production

TSMC’s next generation 16nm process has reached an important milestone – 16nm FinFET Plus (16FF+) is now in risk production.

More...
Nvidia GTX 970 SLI tested

Nvidia GTX 970 SLI tested

Nvidia recently released two new graphics cards based on its latest Maxwell GPU architecture, with exceptional performance-per-watt. The Geforce GTX 970…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Sunday, 22 March 2009 22:26

Critical component of quantum computing discovered

Written by Jon Worrel

Image

Non-silicon based computing on the horizon

Researchers at the UK's Edinburgh and Manchester universities have recently created a non-silicon based molecular device which could serve as the foundation for very powerful and practical quantum computers.


The highly parallel concept of quantum computing has been around for quite some time. It basically idealizes itself around the use of quantum binary digits, or qubits, which are far more complex than typical 1 or 0 ("on" or "off") bits as they are capable of representing a range of values simultaneously. However, one of the major challenges presented to researchers has been the search for a practical medium in which this new form of computing can be implemented.

According to Professor David Leigh, of Edinburgh University's school of chemistry, "the major challenges we face now are to bring many of these qubits together to build a device that could perform calculations, and to discover how to communicate between them." Moreover, the complexity of the qubit will enable quantum computers to perform more quickly than conventional machines in a process known as quantum parallelism. "This development brings super-fast, non-silicon based computing a step closer," he added.

The molecular device discovered was found by combining tiny magnets with molecular machines that can transport between two locations without the use of external force. In effect, these maneuverable magnets may one day be used as the basic component of quantum computing.

On another note, the study was funded by the European Commission and published in Nature, a weekly international science journal.

Last modified on Monday, 23 March 2009 10:32

Jon Worrel

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments