Featured Articles

5th Generation Broadwell 14nm family comes in three lines

5th Generation Broadwell 14nm family comes in three lines

Intel's 5th Core processor family, codenamed Broadwell, will launch in three lines for the mobile segment. We are talking about upcoming…

More...
Broadwell Chromebooks coming in late Q1 2015

Broadwell Chromebooks coming in late Q1 2015

Google's Chromebook OS should be updating automatically every six weeks, but Intel doesn't come close with its hardware refresh schedule.

More...
New round of Nexus phone rumour kicks off

New round of Nexus phone rumour kicks off

Rumours involving upcoming Nexus devices are nothing uncommon, but this year there is a fair bit of confusion, especially on the…

More...
Nvidia officially launches the 8-inch Shield Tablet

Nvidia officially launches the 8-inch Shield Tablet

As expected and reported earlier, Nvidia has now officially announced its newest Shield device, the new 8-inch Shield Tablet. While the…

More...
Aerocool Dead Silence reviewed

Aerocool Dead Silence reviewed

Aerocool is well known for its gamer cases with aggressive styling. However, the Dead Silence chassis offers consumers a new choice,…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Sunday, 22 March 2009 22:26

Critical component of quantum computing discovered

Written by Jon Worrel

Image

Non-silicon based computing on the horizon

Researchers at the UK's Edinburgh and Manchester universities have recently created a non-silicon based molecular device which could serve as the foundation for very powerful and practical quantum computers.


The highly parallel concept of quantum computing has been around for quite some time. It basically idealizes itself around the use of quantum binary digits, or qubits, which are far more complex than typical 1 or 0 ("on" or "off") bits as they are capable of representing a range of values simultaneously. However, one of the major challenges presented to researchers has been the search for a practical medium in which this new form of computing can be implemented.

According to Professor David Leigh, of Edinburgh University's school of chemistry, "the major challenges we face now are to bring many of these qubits together to build a device that could perform calculations, and to discover how to communicate between them." Moreover, the complexity of the qubit will enable quantum computers to perform more quickly than conventional machines in a process known as quantum parallelism. "This development brings super-fast, non-silicon based computing a step closer," he added.

The molecular device discovered was found by combining tiny magnets with molecular machines that can transport between two locations without the use of external force. In effect, these maneuverable magnets may one day be used as the basic component of quantum computing.

On another note, the study was funded by the European Commission and published in Nature, a weekly international science journal.

Last modified on Monday, 23 March 2009 10:32

Jon Worrel

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments