Featured Articles

Analysts expect ARM to do well next year

Analysts expect ARM to do well next year

British chip designer ARM could cash in on the mobile industry's rush to transition to 64-bit operating systems and hardware.

More...
Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Samsung has lost smartphone market share, ending the quarter on a low note and Xiaomi appears to be the big winner.

More...
Intel Broadwell 15W coming to CES

Intel Broadwell 15W coming to CES

It looks like Intel will be showing off its 14nm processors, codenames Broadwell, in a couple of weeks at CES 2015.

More...
Gainward GTX 980 Phantom reviewed

Gainward GTX 980 Phantom reviewed

Today we’ll be taking a closer look at the recently introduced Gainward GTX 980 4GB with the company’s trademark Phantom cooler.

More...
Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac has been in the nettop and mini-PC space for more than four years now and it has managed to carve…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Sunday, 22 March 2009 22:26

Critical component of quantum computing discovered

Written by Jon Worrel

Image

Non-silicon based computing on the horizon

Researchers at the UK's Edinburgh and Manchester universities have recently created a non-silicon based molecular device which could serve as the foundation for very powerful and practical quantum computers.


The highly parallel concept of quantum computing has been around for quite some time. It basically idealizes itself around the use of quantum binary digits, or qubits, which are far more complex than typical 1 or 0 ("on" or "off") bits as they are capable of representing a range of values simultaneously. However, one of the major challenges presented to researchers has been the search for a practical medium in which this new form of computing can be implemented.

According to Professor David Leigh, of Edinburgh University's school of chemistry, "the major challenges we face now are to bring many of these qubits together to build a device that could perform calculations, and to discover how to communicate between them." Moreover, the complexity of the qubit will enable quantum computers to perform more quickly than conventional machines in a process known as quantum parallelism. "This development brings super-fast, non-silicon based computing a step closer," he added.

The molecular device discovered was found by combining tiny magnets with molecular machines that can transport between two locations without the use of external force. In effect, these maneuverable magnets may one day be used as the basic component of quantum computing.

On another note, the study was funded by the European Commission and published in Nature, a weekly international science journal.

Last modified on Monday, 23 March 2009 10:32

Jon Worrel

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments