Published in PC Hardware

20nm Snapdragon 810 supports WiGig

by on21 October 2014



4K multi-device and file transfer

The WiGig standard has been around since 2009, but we haven't really seen it hitting that many retail devices. Back at IDF 2014, Intel demonstrated WiGig 802.11ad video, peripherals, 4K video transfer and it promised that Skylake based laptops will come out of the box with the technology.

WiGig will let you transfer up to 7Gbpps of audio, video or data via 2.4, 5 or 6GHz bands and is as fast as eight-antenna 802.11ac and nearly 50 times faster than highest 802.11n rate. It is backward compatible with WiFi standards, but due to its high frequency it is limited to short distances, usually up to 10 meters, cannot really penetrate walls but it can propagate by reflecting off of walls, ceilings or objects using beam forming.

Now Qualcomm showcased this technology for the first time and promised it inside Snapdragon 810 based devices. Qualcomm demonstrated peer-to-peer connection and transfer of 4K video between two 20nm Snapdragon 810 based tablets. One of the tablets was the sync side and it was connected directly to a 4K TV and it was clear that you could play a content from one tablet and sync it to the second one.

WiGig's 7Gbps translates to 875MB per second in the best case scenario. The Qualcomm demo shows a Plutonium MSM8994 based tablet hitting up to 187MB a second (1.5 Gbit per second) available for data transfer, with 4K multi-device streaming on the side. WiGig can possibly get to external storage, enabling faster NAS systems, future peripherals such as keyboard and mouse and on a longer run it can completely eliminate the necessity for docking stations. It will take some time but this is the grand idea.

It remains to be seen when we will be able to buy first Snapdragon 810 device with 802.11ad WiGig abilities. Qualcomm mentioned 2015 a number of times, but there's nothing more specific than that. A potential problem for this standard might be the speed of flash storage that is used in tablets and phones today. According to Androbench, the HTC One M8 can sequentially read 92.29 MB/s, sequentially write only 17 MB/s, while Nvidia's Shield tablet can sequentially read 67.75 MB/s, and write only 14.09 MB/s.

The performance gets even less impressive with smaller files, but with numbers we are getting from latest 2014 devices, the flash has to increase speed up to 10 times in order to be ready to write files at 150MB. For theoretical maximum of ridiculously fast 875 MB/s we need about 50 times faster memory that the 14-17MB/s write speed available in the current generation of high end mobile devices.

Rate this item
(0 votes)

Read more about: