Featured Articles

Hands on: Nvidia Shield Tablet with Android 5.0

Hands on: Nvidia Shield Tablet with Android 5.0

We broke the news of Nvidia's ambitious gaming tablet plans back in May and now the Shield tablet got a bit…

More...
Nokia N1 Android tablet ships in Q1 2015

Nokia N1 Android tablet ships in Q1 2015

Nokia has announced its first Android tablet and when we say Nokia, we don’t mean Microsoft. The Nokia N1 was designed…

More...
Marvell launches octa-core 64-bit PXA1936

Marvell launches octa-core 64-bit PXA1936

Marvell is better known for its storage controllers, but the company doesn’t want to give up on the smartphone and…

More...
TSMC 16nm FinFET Plus in risk production

TSMC 16nm FinFET Plus in risk production

TSMC’s next generation 16nm process has reached an important milestone – 16nm FinFET Plus (16FF+) is now in risk production.

More...
Nvidia GTX 970 SLI tested

Nvidia GTX 970 SLI tested

Nvidia recently released two new graphics cards based on its latest Maxwell GPU architecture, with exceptional performance-per-watt. The Geforce GTX 970…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Friday, 08 August 2008 07:42

Scientists develop rubbery materials that conduct electricity

Written by David Stellmack

Image

Mold for artificial eye implant


In a breakthrough in the development of electronics, scientists at the University of Tokyo in Japan have reported that they have developed a rubbery material that conducts electricity. This is a key characteristic in making electronic devices that bend and stretch.

Scientist Tsuyoshi Sekitani reported that the material was developed using carbon nanotubes, long carbon molecules that are capable of conducting electricity. Next, a rubbery polymer was added to form the base material and then a grid of tiny transistors was attached to the material. When the materials were tested it was stretched to almost twice its original size and then released. It snapped back into place and did not affect the transistors or destroy the conductive properties of the materials.  Sekitani said that the material could be used on curved surfaces or even in moving parts, such as the joints of a robotic arm.

Additionally, a U.S. research team at the University of Illinois at Urbana-Champaign reported that it has developed an elastic mesh material from standard electronics materials to construct an electronic eye camera that resembles the human eye. This device could be used as a model for the development of an artificial eye implant. (Finally I can take my patch off and pillage in full 3D. Yarr! Turn to port laddies! sub.ed.)
Last modified on Friday, 08 August 2008 10:03

David Stellmack

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments