Featured Articles

Intel refreshes CPU roadmap

Intel refreshes CPU roadmap

Intel has revealed an update to its CPU roadmap and some things have changed in 2015 and beyond. Let’s start with the…

More...
Hands on: Nvidia Shield Tablet with Android 5.0

Hands on: Nvidia Shield Tablet with Android 5.0

We broke the news of Nvidia's ambitious gaming tablet plans back in May and now the Shield tablet got a bit…

More...
Nokia N1 Android tablet ships in Q1 2015

Nokia N1 Android tablet ships in Q1 2015

Nokia has announced its first Android tablet and when we say Nokia, we don’t mean Microsoft. The Nokia N1 was designed…

More...
Marvell launches octa-core 64-bit PXA1936

Marvell launches octa-core 64-bit PXA1936

Marvell is better known for its storage controllers, but the company doesn’t want to give up on the smartphone and…

More...
Nvidia GTX 970 SLI tested

Nvidia GTX 970 SLI tested

Nvidia recently released two new graphics cards based on its latest Maxwell GPU architecture, with exceptional performance-per-watt. The Geforce GTX 970…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Tuesday, 04 March 2014 11:36

Researchers close to sorting out Lithium-sulphur batteries

Written by Nick Farrell



Smelly power

Researchers have worked out a way to improve Lithium-sulphur batteries to make sure that they can be more commercial.

The technology promises to store four to five times as much energy as today’s best lithium-ion batteries but they are aren’t practical because they don’t last very long. Lithium-ion batteries can last 1,000 charge cycles, but lithium- sulphur batteries tend to fail before they’re charged 100 times.

Jeffrey Pyun, a chemist at the University of Arizona thinks electrodes made from sulphur polymers, like other plastic products, should be inexpensive to manufacture on a large scale. Then last year, Pyun’s group reported a way to transform this sulphur into an inexpensive cathode material. By heating the sulphur to 185 ºC and then adding an organic compound, 1,3-diisopropenylbenzene, the researchers form a copolymer containing strings of sulphur atoms tangled up with the diisopropenylbenzene.

To become a commercial product, a battery made with the sulphur polymer will need to have a steady storage capacity throughout its lifetime and be able to last the 1,000 cycles of today’s batteries. To get there, Pyun is experimenting with other kinds of sulphur copolymers that may have better properties.

He is not there yet but he thinks he is pretty close.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments