Featured Articles

Analysts expect ARM to do well next year

Analysts expect ARM to do well next year

British chip designer ARM could cash in on the mobile industry's rush to transition to 64-bit operating systems and hardware.

More...
Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Samsung has lost smartphone market share, ending the quarter on a low note and Xiaomi appears to be the big winner.

More...
Intel Broadwell 15W coming to CES

Intel Broadwell 15W coming to CES

It looks like Intel will be showing off its 14nm processors, codenames Broadwell, in a couple of weeks at CES 2015.

More...
Gainward GTX 980 Phantom reviewed

Gainward GTX 980 Phantom reviewed

Today we’ll be taking a closer look at the recently introduced Gainward GTX 980 4GB with the company’s trademark Phantom cooler.

More...
Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac has been in the nettop and mini-PC space for more than four years now and it has managed to carve…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Wednesday, 12 June 2013 11:09

Quantum dreams may be dead

Written by Nick Farrell

Or alive

Quantum cryptography might not be the security secret weapon that the industry has been hoping for. In theory Quantum cryptography might allow you to encrypt a message in such a way that it would never be read by anyone. But recently methods that were once thought to be fundamentally unbreakable have been shown to be anything but.

Physicist Renato Renner from the Institute of Theoretical Physics in Zurich said the problem was that systems were not being built correctly. In 2010, for instance, that a hacker could blind a detector with a strong pulse, rendering it unable to see the secret-keeping photons.

Renner also said that there are many other problems. Photons are generated using a laser tuned to such a low intensity that it’s producing one single photon at a time. There is a certain probability that the laser will make a photon encoded with your secret information and then a second photon with that same information. All an enemy has to do is steal that second photon and they could gain access to your data.

He told Wired that if there were better control over quantum systems than we have with today’s technology then perhaps quantum cryptography could be less susceptible to problems, but such advances are at least 10 years away.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments