Featured Articles

Nvidia GTX 980 reviewed

Nvidia GTX 980 reviewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
Nvidia adjusts GTX 980 and GTX 970 pricing

Nvidia adjusts GTX 980 and GTX 970 pricing

It appears that Nvidia has been feeling the pulse of the market and took some note from comments regarding the original…

More...
iPhone 6 and 6 Plus reviews are up and they are good

iPhone 6 and 6 Plus reviews are up and they are good

Apple is dancing the same dance year after year. It releases the iPhone and two days before they start shipping it…

More...
Amazon announces three new tablets

Amazon announces three new tablets

Amazon has just released three new tablets starting with the $99 priced 6-inch Kindle Fire HD6. This is a 6-inch tablet…

More...
PowerColor TurboDuo R9 285 reviewed

PowerColor TurboDuo R9 285 reviewed

Today we will take a look at the PowerColor TurboDuo Radeon R9 285. The card is based on AMD’s new…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Friday, 22 February 2013 11:03

3D printers can run off body parts

Written by Nick Farrell



Ear is one I made earlier

Boffins at Cornell University have been showing the potential for 3D printers by creating a replacement ear using a 3D printer and an injection of living cells.

Once refined, the technique will allow biomedical engineers to print customised ears for children born with malformed ones, or people who have lost theirs and have not found them down the back of the sofa. While prosthetic reconstructions are suboptimal; they don't look realistic and they lack the qualities of real tissue, the 3D printer versions are pretty good.

Alyssa Reiffel, Lawrence Bonassar, Jason Spector, and colleagues employed a 3D printing technique they refer to as high-fidelity tissue engineering. They used cartilage from a cow, but think that one day should be able to cultivate enough of a person's ear so that the growth and implantation can happen right there in the lab.

It all starts with a 3-D camera that rapidly rotates around a head for a picture of the existing ear to match. It beams the ear's geometry into a computer. From that image, the 3-D printer produced a soft mold of the ear. Bonassar injected it with a special collagen gel that's full of cow cells that produce cartilage - forming a scaffolding. Cartilage grows to replace the collagen and after three months, it appeared to be a flexible and workable outer ear.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments