Featured Articles

Analysts expect ARM to do well next year

Analysts expect ARM to do well next year

British chip designer ARM could cash in on the mobile industry's rush to transition to 64-bit operating systems and hardware.

More...
Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Samsung has lost smartphone market share, ending the quarter on a low note and Xiaomi appears to be the big winner.

More...
Intel Broadwell 15W coming to CES

Intel Broadwell 15W coming to CES

It looks like Intel will be showing off its 14nm processors, codenames Broadwell, in a couple of weeks at CES 2015.

More...
Gainward GTX 980 Phantom reviewed

Gainward GTX 980 Phantom reviewed

Today we’ll be taking a closer look at the recently introduced Gainward GTX 980 4GB with the company’s trademark Phantom cooler.

More...
Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac has been in the nettop and mini-PC space for more than four years now and it has managed to carve…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Tuesday, 11 December 2012 10:30

Human brain simulation makes the same mistakes

Written by Nick Farrell



Needs coffee


A huge computer project, which simulates the human brain, is so accurate that it makes the same mistakes.

Boffins working on the SPAUN (Semantic Pointer Architecture Unified Network) project were jolly pleased when the computer simulation COULD play games, make predictions and pass simple IQ tests. But some of the tasks it struggles with are the same sort of things that human brains find trickly.

SPAUN, which has 2.5 million virtual neurons, is the brainchild of Professor Chris Eliasmith, who published his paper in the journal Science in November. He said that the only input to the model is an eye, which gets images like you’d take with a camera and the only output is a simulated arm, which we physically model to have mass, length and inertia. The brain uses the arm to draw its responses.

SPAUN can use this arm to copy numbers and letters that it sees with its eye but it doesn’t just copy the shapes, it understands their value and performs almost as well as a human in handwritten character recognition. But the brain can remember short lists of numbers but, like a human, has trouble when the list gets longer it starts to forget some numbers in the middle as the simulated neuron ‘spikes’ get harder to decode.

Unfortunately they have not worked out how to give the simulated brain a good cup of coffee.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments