Featured Articles

Intel releases tiny 3G cell modem

Intel releases tiny 3G cell modem

Intel has released a 3G cellular modem with an integrated power amplifier that fits into a 300 mm2 footprint, claiming it…

More...
Braswell 14nm Atom slips to Q2 15

Braswell 14nm Atom slips to Q2 15

It's not all rosy in the house of Intel. It seems that upcoming Atom out-of-order cores might be giving this semiconductor…

More...
TSMC 16nm wafers coming in Q1 2015

TSMC 16nm wafers coming in Q1 2015

TSMC will start producing 16nm wafers in the first quarter of 2015. Sometime in the second quarter production should ramp up…

More...
Skylake-S LGA is 35W to 95W TDP part

Skylake-S LGA is 35W to 95W TDP part

Skylake-S is the ‘tock’ of the Haswell architecture and despite being delayed from the original plan, this desktop part is scheduled…

More...
Aerocool Dead Silence reviewed

Aerocool Dead Silence reviewed

Aerocool is well known for its gamer cases with aggressive styling. However, the Dead Silence chassis offers consumers a new choice,…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Friday, 13 April 2012 11:34

German boffins create quantum network

Written by Nick Farrell



String several dead or alive cats together


German researchers at the Max Planck Institute of Quantum Optics have created what they are claimig is the first “universal quantum network.”

The big idea is that it could be feasibly scaled up to become a quantum internet. So far their quantum network connects two labs spaced 21 meters apart, but they think it could be scaled up, if Schroedinger’s cats do not stuff everything up by potentially appearing and disappearing like they do on Facebook.

Each node is represented by a single rubidium atom, trapped inside a reflective optical cavity. These atoms communicate with each other by emitting a single photon over an optical fibre. Each atom is a quantum bit and the polarization of the photon emitted carries the quantum state of the qubit. The receiving qubit absorbs the photon and takes on the quantum state of the transmitter. Voila: A network of qubits that can send, receive, and store quantum information.

Apparently the boffins could perform a read/write operation between two labs.


Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments