Featured Articles

AMD sheds light on stacked DRAM APUs

AMD sheds light on stacked DRAM APUs

AMD is fast tracking stacked DRAM deployment and a new presentation leaked by the company  points to APUs with stacked DRAM,…

More...
Nvidia officially launches the 8-inch Shield Tablet

Nvidia officially launches the 8-inch Shield Tablet

As expected and reported earlier, Nvidia has now officially announced its newest Shield device, the new 8-inch Shield Tablet. While the…

More...
Intel launches new mobile Haswell and Bay Trail parts

Intel launches new mobile Haswell and Bay Trail parts

Intel has introduced seven new Haswell mobile parts and four Bay Trail SoC chips, but most of them are merely clock…

More...
Aerocool Dead Silence reviewed

Aerocool Dead Silence reviewed

Aerocool is well known for its gamer cases with aggressive styling. However, the Dead Silence chassis offers consumers a new choice,…

More...
AMD A8-7600 Kaveri APU reviewed

AMD A8-7600 Kaveri APU reviewed

Today we'll take a closer look at AMD's A8-7600 APU Kaveri APU, more specifically we'll examine the GPU performance you can…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Friday, 13 April 2012 11:34

German boffins create quantum network

Written by Nick Farrell



String several dead or alive cats together


German researchers at the Max Planck Institute of Quantum Optics have created what they are claimig is the first “universal quantum network.”

The big idea is that it could be feasibly scaled up to become a quantum internet. So far their quantum network connects two labs spaced 21 meters apart, but they think it could be scaled up, if Schroedinger’s cats do not stuff everything up by potentially appearing and disappearing like they do on Facebook.

Each node is represented by a single rubidium atom, trapped inside a reflective optical cavity. These atoms communicate with each other by emitting a single photon over an optical fibre. Each atom is a quantum bit and the polarization of the photon emitted carries the quantum state of the qubit. The receiving qubit absorbs the photon and takes on the quantum state of the transmitter. Voila: A network of qubits that can send, receive, and store quantum information.

Apparently the boffins could perform a read/write operation between two labs.


Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments