Featured Articles

Apple announces its Apple Watch

Apple announces its Apple Watch

Apple has finally unveiled its eagerly awaited smartwatch and surprisingly it has dropped the "i" from the brand, calling it simply…

More...
Skylake 14nm announced

Skylake 14nm announced

Kirk B. Skaugen, Senior Vice President General Manager, PC Client Group has showcased Skylake, Intel’s second generation 14nm architecture.

More...
Apple officially announces 4.7-inch iPhone 6 and 5.5-inch iPhone 6 Plus

Apple officially announces 4.7-inch iPhone 6 and 5.5-inch iPhone 6 Plus

The day has finally come and it appears that most rumors were actually spot on as Apple has now officially unveiled…

More...
CEO: Intel on target for 40m tablets

CEO: Intel on target for 40m tablets

Intel CEO Brian Krzanich just kicked off the IDF 2014 keynote and it started with a phone avatar, some Katy Perry…

More...
Aerocool Dead Silence reviewed

Aerocool Dead Silence reviewed

Aerocool is well known for its gamer cases with aggressive styling. However, the Dead Silence chassis offers consumers a new choice,…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Tuesday, 07 February 2012 12:42

Boffins create optical fibre junction

Written by Nick Farrell



Fibre has built in electrics


Researchers at Pennsylvania State University researchers have created optical fibre with a built-in integrated electronic component The development opens the way for more streamlined optical components. 

John Badding, a professor of chemistry who led the research said that embedding high-speed electrical devices in the fibre has never been done before Writing in the  Nature Photonics journal he said that he used a chemical procedure that involves depositing semiconducting materials layer by layer into tiny pores alongside a portion of the optical fibers, using a process called high-pressure chemical vapor deposition.

"There was a lot of chemistry that went into making this," Badding said. The researchers didn't build an entire chip in the optical line that can convert photons into electrical impulses, which then can be further processed elsewhere. The junctions themselves are five to 10 microns wide, a few centimeters long, and can ingest data from frequencies as high as 3GHz on standard single-mode optical fibres.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments