Featured Articles

Intel releases tiny 3G cell modem

Intel releases tiny 3G cell modem

Intel has released a 3G cellular modem with an integrated power amplifier that fits into a 300 mm2 footprint, claiming it…

More...
Braswell 14nm Atom slips to Q2 15

Braswell 14nm Atom slips to Q2 15

It's not all rosy in the house of Intel. It seems that upcoming Atom out-of-order cores might be giving this semiconductor…

More...
TSMC 16nm wafers coming in Q1 2015

TSMC 16nm wafers coming in Q1 2015

TSMC will start producing 16nm wafers in the first quarter of 2015. Sometime in the second quarter production should ramp up…

More...
Skylake-S LGA is 35W to 95W TDP part

Skylake-S LGA is 35W to 95W TDP part

Skylake-S is the ‘tock’ of the Haswell architecture and despite being delayed from the original plan, this desktop part is scheduled…

More...
Aerocool Dead Silence reviewed

Aerocool Dead Silence reviewed

Aerocool is well known for its gamer cases with aggressive styling. However, the Dead Silence chassis offers consumers a new choice,…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Tuesday, 29 November 2011 12:04

Japanese outfit creates super transmitting chip

Written by Nick Farell

y exclamation

Should go up to 30Gbps

Japanese semiconductor outfit Rohm has built a chip and antenna that can transmitting 1.5Gbps and should be able to manage 30Gbps soon. The fastest 802.11 (WiFi) transmission speeds can only manage a limp 150Mbps, and the incoming WiGig standard peaks at 7Gbps.

What the boffins think is significant is that the Rohm has managed to set up the reception and transmission of terahertz waves (300GHz to 3THz) using a chip and antenna that’s just two centimeters long. It will only cost $5 to make when it comes market in a few years. Current terahertz-level gear is large, expensive, and only capable of data rates of 100Mbps.

Sadly it is not going to replace standard 2 and 5Ghz home networks, since it is such a high frequency it has to be directional to within a millimetre. Terahertz signals also fall prey to atmospheric radiation.

More here.


blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments