Error
  • JUser::_load: Unable to load user with id: 67

Featured Articles

AMD SVP John Byrne named turnaround exec of the year

AMD SVP John Byrne named turnaround exec of the year

Director of AMD’s PR Chris Hook has tweeted and confirmed later in a conversation with Fudzilla that John Byrne, Senior Vice…

More...
Shield Tablet 8 launching on Tuesday July 22nd

Shield Tablet 8 launching on Tuesday July 22nd

We knew the date for a while but as of right now we can confirm that Nvidia’s new Shield Tablet 8,…

More...
AMD confirms 20nm in 2015

AMD confirms 20nm in 2015

Lisa Su, Senior Vice President and Chief Operating Officer, AMD, has confirmed what we told you back in May 2014 – …

More...
AMD reports loss, shares tumble

AMD reports loss, shares tumble

AMD’s debt load is causing huge problems for the chipmaker -- this quarter it had another substantial loss. The tame Apple Press…

More...
AMD A8-7600 Kaveri APU reviewed

AMD A8-7600 Kaveri APU reviewed

Today we'll take a closer look at AMD's A8-7600 APU Kaveri APU, more specifically we'll examine the GPU performance you can…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Thursday, 12 April 2007 10:26

IBM Goes 3D with Moore?s Law

Written by

Image

3D chips have 100 times more channels


IBM has worked out a new chip-stacking technology which will allow 3D chips and extend the life of Moore’s Law. The technology, dubbed 'through-silicon vias', allows different chip components to be packaged much closer together for faster, smaller, and lower-power systems.
 
3D chip stacking takes chips and memory devices that traditionally sit side by side on a silicon wafer and stacks them together on top of one another.The compact sandwich of components reduces the size of the overall chip package and boosts the speed at which data flows among the functions on the chip.

The new IBM method eliminates the need for long-metal wires that connect today’s 2-D chips together and rely on through-silicon vias, which are vertical connections etched through the silicon wafer and filled with metal.

It shortens the distance information on a chip needs to travel by 1000 times, and allows for the addition of up to 100 times more channels, or pathways, for that information to flow compared to 2-D chips.

Sample chips will be available in the second half of 2007 and will go into production in 2008.

More here.
Last modified on Thursday, 12 April 2007 10:34
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments